ПроСопромат. ру

prosopromat ru Блог

Технический портал, посвященный Сопромату и истории его создания

Нормальные напряжения при изгибе

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту, а поперечная сила оказывается равной нулю. Этот случай изгиба носит название чистого изгиба. Рассмотрим средний участок балки, подвергающийся чистому изгибу.

2015-04-18 18-51-23 Скриншот экранаВ нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.2015-04-18 18-53-48 Скриншот экрана

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза Бернулли). Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.2015-04-18 19-24-58 Скриншот экранаИзгибающий момент представляет собой результирующий момент внутренних нормальных сил2015-04-18 19-27-34 Скриншот экрана, возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: 2015-04-18 20-15-56 Скриншот экрана (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

К выводу формул при изгибе: а) участок балки до деформации; б) участок балки после деформации

Сечения, ограничивающие участок dz, параллельны друг другу до деформации, а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол 2015-04-18 20-27-22 Скриншот экрана. Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:2015-04-18 20-30-57 Скриншот экрана, где 2015-04-18 20-31-30 Скриншот экрана -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину. Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине ,тогда:

alt=»2015-04-18 20-40-28 Скриншот экрана» width=»415″ height=»67″ /> Сократим на2015-04-18 20-27-22 Скриншот экрана и приведем подобные члены, тогда получим:2015-04-18 20-42-00 Скриншот экрана(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям, т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем закон Гука при осевом растяжении-сжатии:2015-04-18 21-37-15 Скриншот экрана, тогда с учетом формулы (2) имеем2015-04-18 21-38-26 Скриншот экрана (3),т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону. На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь 2015-04-18 21-41-53 Скриншот экрана как постоянную величину, тогда имеем2015-04-18 21-44-49 Скриншот экрана. Но выражение 2015-04-18 21-45-28 Скриншот экрана — это осевой момент инерции сечения относительно оси х — Iх. Его размерность см 4 , м 4

Тогда2015-04-18 21-48-38 Скриншот экрана ,откуда2015-04-18 21-51-09 Скриншот экрана (4) ,где2015-04-18 21-52-02 Скриншот экрана — это кривизна изогнутой оси балки, а2015-04-18 21-53-03 Скриншот экрана — жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения:2015-04-18 21-56-56 Скриншот экрана (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение 2015-04-18 22-01-02 Скриншот экрана (6) называют осевым моментом сопротивления сечения. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: 2015-04-18 22-02-34 Скриншот экрана (7)

Условие прочности при изгибе:2015-04-18 22-05-04 Скриншот экрана (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения,т.к. имеется поперечная сила. Касательные напряжения усложняют картину деформирования, они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений. Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5). Таким образом ,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать 2015-04-18 22-27-18 Скриншот экранаПодставим сюда формулу нормальных напряжений (3) и получим2015-04-18 22-29-42 Скриншот экрана Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что 2015-04-18 22-31-54 Скриншот экрана этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х 2015-04-18 22-34-11 Скриншот экрана, и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие 2015-04-18 22-37-31 Скриншот экрана (отсутствие момента внутренних сил относительно силовой линии) даст2015-04-18 22-39-10 Скриншот экрана или с учетом (3) 2015-04-18 22-40-08 Скриншот экрана. По тем же соображениям (см. выше) 2015-04-18 22-41-13 Скриншот экрана. В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю, значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии, несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Оцените статью
АВТОЭЛЕКТРИК
Добавить комментарий